A study of Chinese named entity and relation identification in a specific domain

نویسنده

  • Tianfang Yao
چکیده

This thesis aims at investigating automatic identification of Chinese named entities (NEs) and their relations (NERs) in a specific domain. We have proposed a three-stage pipeline computational model for the error correction of word segmentation and POS tagging, NE recognition and NER identification. In this model, an error repair module utilizing machine learning techniques is developed in the first stage. At the second stage, a new algorithm that can automatically construct Finite State Cascades (FSC) from given sets of rules is designed. As a supplement, the recognition strategy without NE trigger words can identify the special linguistic phenomena. In the third stage, a novel approach positive and negative case-based learning and identification (PNCBL&I) is implemented. It pursues the improvement of the identification performance for NERs through simultaneously learning two opposite cases and automatically selecting effective multi-level linguistic features for NERs and non-NERs. Further, two other strategies, resolving relation conflicts and inferring missing relations, are also integrated in the identification procedure.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Novel Approach to Conditional Random Field-based Named Entity Recognition using Persian Specific Features

Named Entity Recognition is an information extraction technique that identifies name entities in a text. Three popular methods have been conventionally used namely: rule-based, machine-learning-based and hybrid of them to extract named entities from a text. Machine-learning-based methods have good performance in the Persian language if they are trained with good features. To get good performanc...

متن کامل

Chinese Named Entity and Relation Identification System

In this interactive presentation, a Chinese named entity and relation identification system is demonstrated. The domainspecific system has a three-stage pipeline architecture which includes word segmentation and part-of-speech (POS) tagging, named entity recognition, and named entity relation identitfication. The experimental results have shown that the average F-measure for word segmentation a...

متن کامل

سیستم شناسایی و طبقه‌بندی موجودیت‌های اسمی در متون زبان فارسی بر پایه شبکه عصبی

Named Entity Recognition (NER) is a fundamental task in natural language processing and also known as a subset of information extraction. We seek to locate and classify named entities in text into predefined categories such as the names of persons, organizations, locations, expressions of times, etc. Named Entity Recognition for English texts has been researched widely for the past years, howev...

متن کامل

Cross domain Chinese speech understanding and answering based on named-entity extraction

Chinese language is not alphabetic, with flexible wording structure and large number of domain-specific terms generated every day for each domain. In this paper, a new approach for cross-domain Chinese speech understanding and answering is proposed based on named-entity extraction. This approach includes two parts: a speech query recognition (SQR) part and a speech understanding and answering (...

متن کامل

Named Entity Recognition in Persian Text using Deep Learning

Named entities recognition is a fundamental task in the field of natural language processing. It is also known as a subset of information extraction. The process of recognizing named entities aims at finding proper nouns in the text and classifying them into predetermined classes such as names of people, organizations, and places. In this paper, we propose a named entity recognizer which benefi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006